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EXPERIMENTAL DESIGN AND EVALUATION
OF BOUNDED RATIONALITY
USING DIMENSIONAL ANALYSIS*

Victoria Y. Jin
Alexander H. Levis

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

Dimensional analysis is a method used in the design and analysis of experiments in the
physical and engineering sciences. When a functional relation between variables is
hypothesized, dimensional analysis can be used to check the completeness of the relation
and to reduce the number of experimental variables. The approach is extended to include
dimensions pertaining to cognitive processes so that it can be used in the design of
multi-person experiments. The proposed extension is demonstrated by applying itto a
single decisionmaker experiment already completed; new results from that experiment are
described. It is then applied to the design of a multi-perscen experiment.

Paper to be presented at the 4th IFAC/ IFORS /IEA Conference on Man-Machine Systems,
Xi'an, China September 1989.

* This work was conducted at the MIT Laboratory for Information and Decision Systems with
support provided by the U. S. Oftice of Naval Research under Contract No. N00014-84-K-0519
(NR 649 003).




FXPERIMENTAL DESIGN AND EVALUATION OF BOUNDED RATIONALITY

USING DIMENSIONAL ANALYSIS!

Victoria Y. Jin
Alexander H. Levis

Laboratory for information and Decision Systems, Massachusetts Institute of Technology

Cambndge, MA 02139, USA

Abstract.  Dimensional analysis is a method used in the design and analysis of experiments in the
physical and engineering sciences, When a functional relation between variables s hypothesized,
dimensional analysis can be used to check the completeness of the relation and to reduce the
nnumber of experimental variables. The approach is extended to include dimensions pertaining to
cognitive processes so that it can be used in the design of multi-person experiments. The
proposed extension is demonstrated by applying it to a single decisionmaker experiment already
completed; new results from that experiment are described. It is then applied to the design of a

multi-person experiment.
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INTRODUCTION

In the last few years, a mathematical theory for the analysis and
design of information processing and decisionmaking
organizations has been developed based on the model of
interacting human decisionmakers (DMs) with bounded
rationality (Levis, 1984, Boettcher, 1982). While this modei
was motivated by empirical evidence from a variety of
experiments and by the concept of bounded rationality
(March.1978), there were no direct experimental data to
support it. An experimental program was undertaken to test
the theory and obtain values for the mode! parameters (Louvet
et al.,1988).

One of the major difficulties in developing a model-driven
experimental program is the large number of parameters that
have to he specified and varied. The resulting problem has two
aspects: (1) The parametrization of the experimental conditions
leads to a very large number of trials, a situation that is not
really feasible when human subjects are to be used, and (b) Not
all experimental variables can be set at the values required by
the experimen-al design because of the lack of direct control of
the cognitive variables.

Consequently, some orderly procedure is needed that will allow
the reduction of the number of experimental variables and,
more importantly, that will lead to variables that are easier to
manipulatz. Such an approach, called dimensior.al analysis, has
been in use in the physical and engineering sciences
(Hunsacker, 1947; Gerhart, 1985). The purpose of this paper
is to extend the approach to problems that have cognitive
aspects <o that it can be used for the design and analysis of
experiments. The class of problems we are interested in are
those that relate organizational structure directly to
performance, as measured by accuracy and timeliness and,
more indircctly, to cognitive workload.

A specinl class of organizations will be considered - a team of
well-trained decisionmakers executing repetitively a set of
well-defined cognitive tasks under severe time pressure. The
cognitive limitations of decisionmakers i=;~ses a constraint on
th= organizatonal performance.  Performance, in this case, is
assumed to depend mainly on the time available to perform a
task and on the cognitive workload associated with the task.
When the time available to perform a task is very short (time

TThis wnrk was conducted at the MIT Laboratory for
Information and Decision Systems with support provided by
the U.S. Office of Naval Research under Contract No.
NONO14-84-K-0519 (NR 649 003).
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pressure is very high), decisionmakers are likely to make
mistakes so that performance will degrade.

Dimensional analysis will be introduced briefly in the next
section. The approach is then extended to include cognitive
variables and a completed experiment will be used as an
example to demonstrate the approach. Then, the application of
dimensional analysis to the design of experiments for the
analysis and evaluation of distributed decisionmaking
organizations will be described.

DIMENSIONAL ANALYSIS AND
EXPERIMENTAL DESIGN

Dimensional analysis is a method for reducing the number and
complexity of experimental variables which affect a given
physical phenomenon. A detailed introduction to dimensional
analysis can be found in Hunsacker (1947); Gerhart (1985).

Dimensions and Units. A dimension is the measure which
expresses a physical variable qualitatively. A unitis a particular
way to express a physical quantity, that is, to relate a value to a
dimension. Fundamental dimensions are the primary
dimensions which characterizes all variables in a physical
system. For example, length, mass. and time are fundamental
dimensions in mechanical systems. A dimension such as
length per time is a secondary or derived dimension. If the
dimension of a physical variable cannot be expressed by the
dimensions of others in the same equation, then 4.}, vari~"le is
dimensionally independent.

The foundation of dimensional analysis is the Principle of
Dimensional Homogeneity, which states that if an equation
truly describes a physical phenomenon. it must be
dimensionally homogeneous, i.e., each of its additive terms
should have the same dimension. The basic theorem of
dimensional analysis is the mn theorem, also called
Buckingham's theorem:

n theorem: If a physical process is descnbed by a
dimensionally homogeneous relation involving n
dimensional variables, such as

X1 = f(xz.X3.....Xn) (@8]

then there exists an equivalent relation involving (n-k)
dimensionless variables, such as

m = F(Kz. L TR Nn.k) (2)




where kois usaally equal to, but never greater than, the
number of fundamental dimensions needed to describe all
x's

Each of the x'sin Eq. (2) is formed by combining (k+1) x's to
form dimensionless variables. Comparing Eqgs. (1) and (2), it
‘< clear that the number of independent variables is reduced by
k. where k is the maximum number of dimensionally
independent variables in the relation, The proof of the n
theorem can be found in Gerhart (1985).

The n theorsm provides a more efficient way to organize and
manage the variables in a specific problem and guarantees a
reduction of the number of independent variables in a relation.
Dimensionless variables, also called dimensionless groups, are
formed by grouping primary variables with each one of the
secondary variables.

To apply dimensional analysis to decisionmaking
organizations, the fundamental dimensions of the variables that
describe their behavior must be determined. A system of three
dimensions i< shown in Table 1 that is considered adequate for
modeling cognitive work!oad and bounded rationality. An
experiment conducted at MIT (Lou et et al., 19%8) is used to
demonstrate the application of dimensional analysis to the
experimental investigation of bounded rationality. The purpose
of this single-percon experiment was to investigate the bounded
rationality constraint. The experimental task was to select the
smallest ratio from a sequence of comparisons of ratios
consisting of two two-digit integers. Two ratios were
presented to a subject at each time. The subject needed to decide
the smaller one and compare it with the next incoming ratio
until all ratios were compared and the smallest one was found.
The contwrolled variable (or manipulated variable) was the
amount of time allowed to perform the task. The measured
variable was the accuracy of the response, i.e., whether the
correct ratio was selected.

TARLE | Dimensions for Cognitive Problems

Dimension Symbol Units
Time T second
Information I bit

tuncertanty)

Task S symbol

The controlled variables were the number of comparisons in a
sequence. denoted by N, and the allotted time to do the task,
denoted by T, For each value of N, where N could take the
value of three or six, T, took twelve values with constant
increment in the following way:

T, =

{ for N = 3;
T.=1"

for N=6,

-0

25.3,375, ... 105} second
50, 6,7.50,...,20.1 } second

The performance was considered to be accurate or ~orrect if the
sequence of comparisons was completed and if the smallest
ratin selected was correct. The details of the experiment can be
found in Louvet (1988).
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for himan decision makers. When the alloncd time is
decreased, there will be a time beyond which the time spent
dning the task will have to be reduced, if the execution of the
task 1s to be completed. This will result in an increase in the
infonmation processing rate F, if the workload is kept constant.
However, the bounded rationality constraint limits the increase
of F to a maximum value Fp. . When the allotted time for a
particular task becomes so smail that the processing rate reaches
Fmac. further decrease of the allotted time will cause
pertormance to degrade. It was hypothesized that the bounded
rationality constrant Fooa. is constant for each individual DM,
but varies from individual to individual. The bounded

rationality constraint can bhe expressed as
Fmax = G/T.* )

where T,,* is the minimum allotted time before performance
degr.ldes significantly. G and Ty~ vary for different tacks, but

ﬁ‘ is constant for a decision mllke.rAno matter what kind of
ns s he does. Therefore, significant degradation qf
performance indicates that the allotted time approaches T,
Observation of this degradation during the experiment : alfows
the determination of the time threshold and, therefore, the
maximum processing rate, provided the workload associated
with a specific task can be estimated or calculated.

The retroactive application of dimensional analysis to this
experiment will be shown step by step.

Wri imensional expressi

In the experiment, accuracy, Ne. of information processing and
dccnsxonmakmg is defined as t %e number of rrect decisions,
that is, the number of correct results in a sequence of
comparisons. Therefore. N¢ hos the dimension of symbaol and
depends on the following varizhles:

N:  number of comparisons in each trial;

T,: allotted time to do N comparisons;

H:  uncertainty of input, that is, the uncertainty of the
ratios to be compared in a trial;

The dimensional expression is
Ne = f(T,. N H) 4

First, dimensional analysis checks whether this functional
relation could describe the relation between N¢ and other
variables. The dimensions of the variables in Eq. (4) are the
following:

[Nel =S [Tyl =T
[NJ =$ M) =1

Since the dimension of N¢ is S. the right hand side of Eq. ()
has to be of the same dimension regardless of what the function
f is. However, all three fundamental dimensions are
represented by the three independent variables. There i< no
way to combine these variables to obtain a term of dimension S
only. Therefore, according to the Principle of Dimensional
Homogeneity, this functional relation is nnt a correct
expression of the relaticn under the investigation.

There are two approaches to obtain the correct relation. The
first is to delete T,, and H. This is not acceptable because the
allotted time is a critical factor in this experiment. The other
approach is to add some variables or dimensional constants to

satisfy the requirement for dimensional homogeneity.
Dimensional constants are physical constant such as gravity,
the universal gas constant, and so on. No such dimensional
constant has been identified as yet, therefore, some variahles
whichk have dimensions of time and information <hould be
added to the relation. Moreover, the additional vaniables have
0 be relevant tu the measurement of accuracy. Since the
experiment is to investigate hounded rationality, that is, the
maximum information processing rate, it is appropriate to
introduce processing rate F into the equations. The equations
descnbing accuracy and response time become

Ne = F(Ty. N.H.F) )

Tach ot the equanons s dunensionaly ho. s
are five dimensional variables in Eq. (), that i

5 There
S,

noou
mine the number of dimensionless ]

The number of dimensionless varables is equal to n-k, where k

is the maximum number of dimensionally independent vanabies

in Eq. (5). Dimensions of the variables are

[Nel =S, IN| (Tul=T,

iH] =1 [Fl=1T!




The maximum number of dimensionally independent variables
is three. Therefore, k is equal to three. Then, the number of
dimensionless groups is:

n-k=5-3=2

There will be two dimensionless groups in the dimensionless
equation corresponding to Eq.(5).

3 nstrug imensio

While the choice of primary variables is essentially arbitrary,
consideration should be given that the dimensionless groups be
meaningful. If T, N, and H are selected as the three (k=3)
primary variables, two dimensionless groups are constructed
on the basis of the remaining variables N¢ and F in Eq.(5). As
an example, a dimensionless group r is formed by combining
Ty, N, H.and T. Using the power-product method, ©ty can be
determined by the following procedure. Write nty as

mp =T, Nb e Fd

where a. b, ¢, and d are constants that make the right hand side
of the equation dimensiorless. so that the equation is
dimensionally homogeneous In terms of the dimensions of
Tw. N.H.and F we have

I = 18" 1T = [T] (1jb Sye (IT-1)d
= Ta-d [h+d 5

~,
N

By the Principle of Dimensional Homogeneity, the following
set of simultaneous algebraic equations must be satisfied.

For T: a-d=0
For [: b+d =0
For §S: c=0

There are three equations, but four unknowns. The solution is
not unique. In general, the choice of the solution depends on
the particular interest in the subject. For our purpose, the
secondary variables, in this example N¢ and F, are chosen to
appear in the first power, that is, d is set equal to unity. Thus,
by solving the set of algebraic equations, we obtain:

a=1, b=-1, ¢=0, d=1
Then
ny = F/(H/Ty,) (6)
Using the same power-product method, my is found to be
ny = NC /N (7)

Then, the dimensionless form of Eq. (5) is

N _ F
Tw

Looking at Eq.(8) carefully, we find the all variables except F
are directly controllable or measurable. If the actual processing
time Ty is introduced, then the actual processing rate F can be
expressed by

<:.G_
F T, (&)

where G is the warkload asenciated with the tact

{he actual processing time T¢ can be measured directly.
Therefore. substitution of G/T; for F is necessary so that all
variables in FEq.(8) are directly accessible. After the
substitution, Eq.(R) becomes

G
Nc Tf GT\V
M, = — =W )=%=)=¥nr) (1M
2 N ;l HTf 1

T'his introduction of Ty will be very useful in developing a

design procedure for new experiments later in this paper. This
is the result obtained by the application of dimensional analy «s
The functions ‘¥ is unknown and need to be determined by
experiments.

In Eq. (10), n, is the fraction of correct decisions; and m;
represents the ratio of the actual processing rae and the average
rate of input uncertainty. Equation (10) represents a
model-driven experiment in which ®r; is the experimental
variable to be controlled. The function ¥ nceds to be
determined experimcatally.

Comparing Eq.(5) and Eq.(10). one finds that the number of
independent variables is reduced from four to one. This
reduces the complexity of the equations and factlitates
experiment design and analysis. Properly designed expenments
using dimensional analysis provide similitude of experimental
condition for different combinations of dimensional variables
which result in the same value of n's. Sinulitude reduces the
number of trials needed to be run in order to define ‘¥. This is
a major advantage when the physical (dimensional)
experimental variables cannot be set at arbitrary values.

APPLICATION

One of the objectives of this pape: is w iliustrate the use of
dimensional analysis for the design and analysis of
model-driven experiments. Therefore, only new results from
the earlier experiment, obtained using dimensional analysis,
will be shown. The following procedure was used to analyze
the data. Only three subjects are selected from the population of
all subjects (25 subjects) for illustration.

Data for each mial

Control variables Measured variables Computed variables

In this analysis, N is fixed and its value is three (3). Hand G
are computed using Information theory. H is constant for the
expeniment, and G depends on the algorithm used by a subject
to do the task; therefore, it varies across the subjects. The
details of ihese computation can be found in Louvet (198R). J
is the ratio of the number of correct decisions N¢. to the number
of total decisions, N. The controlled variable in each trial is T,,.
As stated previously, there are 12 values of T,,.

Step 1: Compute the input uncertainty H and the workload for
all algorithrﬂs used by the subjects. The workload is denoted by
G! for the ith algorithm.

The following steps are carried out for each subject.

Step 2: Let I; denote the set that indexes the trials with the jth
value of T, denoted by Ty,;: [j={1.2,3..... n;}. The following
average quantities are compuu:d| for each T;:

"J N
_ _1_ cjt
5= n Z( N )

where j = 1,2,....12.

Step 3: Compute the two dimensionless groups for each Tuj.i
=1.2,.,12

-

wj
Trj

where k is the index of the algorithm used by the subject. Since




there are 12 values of T» my and n; also have 12 values each.

Step 4: Find relations between n| and ny. Equation (10) can
be rewntten as:

J=%¥(nr)
since J s identical 1o &y,

In order 10 determine the function ¥, the mean value of J, as
calculated in step 3, is plotted against the independent vaniable
n}. The resulting plot for one subject is shown on Fig.1.

subj. 53
1
0.8 o A .
0.6 ‘e o * e ¢
J
0.4
o2} ¢

Q¢ + + + + 44—
5 55 6 65 7 75 8 85 9 95 10
F/(H/Tw)

Fig. 1. Mean J vs. ry for subject 53

An exponential function is used to fit the curve. The
exponential function is

y =a+b*Exp.(-c*(r-np)iw > mp

where a, b, ¢, and mp are constants to be determined. By
considering that the maximum possible value of J is one and the
minimum value Jg, a and b can be determined as 1 and (Jg-1)
respectively. Then, we have

y =1+ (Jg-1) *Exp(-c*(n-rig))

A Least Squares method is used to determine ¢ and g when
assuming a value for Jo. The criterion is that Jj is chosen so
that the sum of the squares of residuals is minimized. The
resulting function is plotted in Fig.2, along with the data.
Figures 3 an 4 show comparable results for two other subjects.

subj. 53

® fit © data
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Fig. 2. Mean J vs. n; for subject 53
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1
.
08 o & @0 8 8
06 68°
o
0.4 A4
02
Qte
3 4 5 6 7 8 g 10 11 12

FIHH/Tw)
Fig. 3. Mean Jvs. r; for subject 28

From these relations, the critical value of . ;*, can be found
for each subject according 1o some specitic accuracy
requirement. For example, the value of m; for which Jis equal
to J*, is given by:

J* is the accuracy corresponding to my* at which further
decrease of ®ty can cause a significant drop of J.

subj.46
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Fig. 4. Mean J vs. m; for subject 46

When the entire data set is processed, then the distribution of
% * can be obtained, in a manner analogous to that used by
Louvet et al. to determine the distnibution of the critical
response times. This information helps specity the range of
some experimental parameters in the multi-person experiment.

The determination of the dimensionless groups and the
estimation of the ‘¥ completes the use of dimensional analysis.
The determination of the dimensionless groups and the
estimation of the ¥ completes the use of dimensional analysis.

RESULTS

One of the critical questions in any experiment design is the
determination of the ranges of manipulated paramecters. We
want to choose the ranges of these paramcters so that the
measured variables will have significant differences and can be
interpreted in a meaningful way. The results from above
analysis are useful for this design purpose.

Actual processing time T¢
The first result is obtained through the introduction of the actual
processing time Tg and the determination of a functional relation

between Ty and the allowed time, T,,. A proposition is
formulated on the basis of the experimentai data

Definition A task is said to have been completed if and only it
all necessary actions required by the task are tuhen before the
allowed time expires, thatis, T < Ty,

Proposition I When a task is completed, it is completed in less
time than the allowed time, that is, Ty < T, . How much less
depends on the length of the allowed ume.

Proposition 1 confirms the functional relation between Ty and
T,, and is used later in this paper to determine the range for the
allowed time to assure thct the operating point is close 1o the
bounded rationality, but does not exceed it.

The functional relation be-ween response time Ty and allowed
time T,, has been found to be exponential, as shown in Fig 5
and Fig.6. This exponential relation implies that T increases
with T,, quickly at the beginning until T, reaches a point
beyond which Ty does not change with T,,,. The reason for this
behavior is intuitive: when there is ample time 10 do a job, the
effect of the time on the performance will become relevant.
This result is useful in the multi-person experiment destgn in
two ways.




First, T¢ leads to a better estimate of the processing rate because
it is the time actually used in processing the information.
Therefore, the bounded rationality can be expressed by

Fm;\x=G/Tf. (1)
where Ty is the Ty at which J = J*,
Second. the functional relation between Tyand T,, allows us to
predict the response time for a given T, . The existence of the

region 1 which fuither increases of T,, do not result in any
significant change in Ty indicates the time pressure imposed by

subj.28
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Fig.6. Response time Ty vs. available time Ty, for subject 53

T,, does not affect the performance any more. Thus, through
Ty, we can avoid those values of T,, which will not have any
effect on performance.

imensionless parameter K|

The second result obtained from dimensional analysis is the
dimensionless parameter =y vhich provides knowledge on the
values of the design variatles H, G, and T,,. As stated
previousls, the critical value ¢f ), denoted by ny*, is the value
at which any small decrease of my will cause a significant
decrease in accuracy. To determine how to use the information
given by m*, we first consider how the subjects process
information and make decisions respectively, then we describe
how 1ty * can lead to a design procedure.

When looking at the algorithms used by the subjects, we find
that the subjects can be categorized into two different groups
according to the ways they make decisions. The first group of
subjects attempts to simplify the ratios as soon as the ratios are
presented. then make a decision according to the simplified
version of the data. They try to filter out an amount of
information so that only a minimum amount of information
necessary to make the decision is kept. On the other hand, the
second group of subjects look at the raw data carefully before
making any reduction. When processing the data, they retain a
large amount of information which may be used in making a
decision.

Wohl {1981) has described a mode! developed by Johnson
(1978) in which individual styles of decision making are
classified. In the model, Johnson identified two decision styles
in gathering information, spontaneous and systematic. Table 2
list the traits of these two styles. By using Johnson's model of
decision styles, we can describe the decision style of the first

group as spontancous, while of the second group as
systematic. The division of the subjects into the two groups is
shown in Table 3. The average values of workload, G. and the
maximum processing rate, Fp,,. of different groups are
shown in Table 4. These values indicate that the subjects in the
systematic group have higher processing rate than those in the
spontaneous group. One cautious observation is that the
maximum rate is not proportional to the workload when
decision styles vary.

Next, we discuss how to use 1ty * to design new experiments,

TABLE 2 Characteristics of Decision Styles

Spontaneous

- A holistic reaction to events
reacts to total experience
- Quick psychological commitment
Personalize alternatives in order to evaluate them

- Flexible goal orientation

Systematic

- Collective reaction to situations/events.
Breaks experience into segments and reacts
separately to each one

- Cautious psychological commitment

- Methodical goal orientation
ivisi j in Differen
Group Number of Subjects
Spontaneous 10
Systematic N
4 Av val f Different Groups of the Subj
Group Av.G Av. Foax
Spontaneous 212.6 453
Systematic 257.6 86.0

The critical value of my, m;*, of an individual subject
characterizes his bounded rationality. The expression of my in
Eq.(10) can be rewritten as

_(G, 1

nER T

(=)

T,

Then, m;* is

ny=(Gy__1
H Tl’ .

(=)

T.

(T/Ty)* is the ratio of critical response time and the allowed
time corresponding to J*. According to Proposition I, T¢ will
become smaller and smaller if T, is decreasing. When the
accuracy J is equal to J*, Tgand T, become T¢* and T *
respectively. Thus, (T¢/T,,)* characterizes the cognitive inertia
of an individual in accelerating the processing rate to reach the
maximum rate, Fpay. On the other hand, the ratio of G/H
depends on a particular task and protocols. Thus, when G/H
changes, (T¢/T,)* will vary accordingly to maintain Fpy,y to be




the same. Consequently, rty* will not change. Therefore, m*
is the value which can be used in designing new experiments.
Let us call the experiment described above as the calibration
experiment on the bounded rationality of individuals. The
following procedure is developed to design new experiments.

EXPERIMENT DESIGN

The procedure for designing experiments to study the effects of
organizational structures on performance is described as
follows.

At the start of design, the average value of m* is given by the
calibration experiment. And in accordance with Proposition 1,
the exponential relation derived from the calibration experiment
is adopted. The crtical value for the design is

= G/H( To/ TO*,
or GM=m*( Ty Ty )* (15)

where G, H, and T, are design parameters.

- G depends on H and the organizational structure, that is, the
particular procedure and protocol;

- H can be controlled by designing the task;

- Ty, is the driving parameter for the tempo of the operations.

- Myt s given,

The design steps are as follows.

1 Design

Design 4 task according to the hypothesis being tested by the
experiment. The input uncertainty H of the task can be
computed.

Step 2 Design G.

Design an organizational structure which will perform the task.
Then, the particular protocol and procedure can be specified for
the organization. Workload associated with the protocol and
procedure is computed.

Step 3 Determine T,

Determine the values of the allowed time T,,. Since H and G
are known from steps 1 and 2, Equation (15) can be rewritten
as

(T Ty )* = (G/H) =y * (16)

To decide the critical value of T, the functional relation
between Ty and T, is used. Substitute T¢ = f(T,,) into Eq.(16)
to obtain

(T /Ty )* =( G/H)/m * (17)

From Eq. (17) the value of T, * can be computed. Then T¢* is
estimated. Fp., is computed using Eq. (11).

Use of T¢ = f(T,,) and Eq.(16) permits the determination of the
range of T,, which satisfies the constraints specified by the
designer. For example, the interval R in Fig. 7 is the interval
from which the values of T, are taken so that the operating
point will be in an appropriated range. T, max is the value at
which Ty does not change significantly with T, or in terms of
time pressure, the speed of the operation does not critically
depend on the time. The values of T, outside the interval are
either too small to allow the subject to carry out the task (the
bounded rationality constraint) or too large to observe any
variation of ty with ny (no efiect on performance).

Step 4 Check all design and computed values.

List I, G, T, *, T¢*. Fpaa. and create a table for T,, and
corresponding values ot Tgand F. If there is any undesired
value, the designer can go back to step 1 to make modifications
until he is satisfied.

According to Eq.(16), the critica. values of T and T, will
change when either the task or the organizational structure
changes. Therefore, the experiment designer can use the
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Fig. 7 An example of determining the values of T,,,

freedom on the choice of tasks and organizational structures to
design appropriate experiments for various hypotheses.

Step 5. Calibration of subjects.

Design a questionnaire to determine the decision style of a
subject. This calibration helps the experimenter 1o make a
preliminary assessment as to which group that subject may
bclclmg and to choose the parameter set for a particular set of
trials.

CONCLUSIONS

Dimensional analysis has been introduced to the design of
experiments that have cognitive aspects. An extension has been
presented that makes it possible to include variables such as
cognitive workload and bounded rationality of human decision
makers. An existing single person experiment has been used as
an example to show how the methodology can be applied. A
new result from the existirg experiment has been presented to
illustrate the possible advantages of using dimensional
analysis. Note that dimensional analysis only determines
possible relations between relevant variables; the actual
functional expression has to be found from experimental data.
Then it was shown how these results can be used to design
model-driven experiments.
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